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ABSTRACT

-')097(5)

The motion of an artifical earth satellite about its center of
mess as a result of radiation forces is investigated. The
satellite is assumed to be symmetrical, both geometrically and
d&namically. The sources of radiation considered are direct
solar rﬁdiation, solar radiation reflected by the earth and its
atmosphere, and direct radiation from the earth. For these three
cases the forces and torques acting on an arbitrarily shaped
satellite are derived. The results are in integral form and ere
dependent upon the satel}.ite’s surface geometry as well &s upon
its orientation relative to the earth and sun and its mass
distribution,

The effects of the radiation torques upon the otherwise
unperturbed motion of the satellite about its center of mass
can be divided into two motions; motion of the axis of symmetry
about the satellite's angular momentum vector (relative to its
center of mass), and motion of the angular momentum vector.
For the sources considered the motion about the angular momentum
vector is an unperturbed Euler-Poinsot motion and the angular
momentum vector itself, while remaining practically constant in
magnitude, pmcesées and nutates relative to inertial space.
This latter motion is described relative to the earth-sun line
for direct solar radia.fion and relative to a perigee coordinate

system for reflected solar and direct earth radiation.

ii.
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NOTATION

A. Coordinate Systems

1.

Equatorial Reference (XO,YO,ZO) - An inertial
coordinate system with origin located at the
center of the earth; the Zoxo plane the equa-
torial plane with Z0 directed towards the Vernal
Equinox. Unit vectors -I-o’ Iy 50

Ecliptic Reference (X;,Y;,Z;) - An inertial coor-
dinate system with origin at the center of the
earth; the Z X_ plane the ecliptic plane with

z; directed towards the Vernal Equinox. Unit
vectors E;, g;, ;_(_Z).

Perigee Reference (X,Y,Z) - A non-inertial coor-
dinate system with origixi at the satellite's
center of mass; the ZX plane the orbit plane

with Z parallel to the position vector at perigee,
X parallel to the tangent to the orbit at perigee.
Unit vectors I, J, K.

Body-Fixed Reference (x,¥,z) - A rotating coor-
dinate system with origin at the satellite's
center of mass and directed along the satellite's
Principal Moments of Inertia directioms. Unit

vectors 1, j, k.
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Inertis dyadic of the satellite about its CM
Rediation intensity

Radiation flux

Re/r

Lyapurov function

Unit vectors, refer to Figure 5

Moment of radiation forces

Camponents of M due to direct solar, reflected
solar, and direct earth radiation

Unit normal to element of surface area
Period of satellite in its orbit

Position vector of CP relative to CM
Position vector of satellite's center of mass
relative to center of earth

izl

Position vector of element of satellite's
surface area relative to CM

Radius of the sphere taken as model for the
earth and its atmosphere

Average radius of the earth

Mean earth-sun distance

Satellite-sun distance

Radius of sun

Solar constant at the mean earth-sun distance
Solar constant at the satellite

Satellite spin
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Absolute temperature

Time

Potential of the moments about the CM

Euler angles between (x,y,z) and (X;,Y;,Z;)
Shadow factor; unity when satellite is in
sunlight, zero when it is in the earth's shadow
Inclination of the ecliptic plane to the
equatorial plane

Emissivity

Angle between H and g%

Angle Dbetween H and @

Angle between surface normal and line from dAe
to the sun

Angle between surface normal and line from dAs
to the sun

Angle between z-axis and Es

Angle between z-axis and Er

Angle between projection of H on &8, plane and &
Angle between projection of H on YZ plane and X
Longitude of the sun in the ecliptic plane

from Vernal Equinox
Angle between H and Ss
Angle between H and I

Angles between surface normsls and the line

connecting dAé and dAs

viii.
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Reflectivity, absorptivity, and transmissi-
bility of satellite's surface to the earth's
(1ow temperature) radiation

Reflectivity, absorptivity, and transmissi-
bility of satellite's surface to the sun's
(high temperature) radiation

Average reflectivity of the earth and its
atmosphere

Stefan-Boltzmann constant

Angle between H and z-axis of satellite

Angle between Sr and _e_s

Angle between the plane ofgandgsa.ndthe
Plane of H and k

Angle between the plane of H and I and the
Plane of H and k

Lo‘ngitud.e of Ascending Node of satellite's
orbit from Vernal Equinox

Longitude of Perigee from Ascending Node
Angular velocity of e relative to inertial space
Angular velocity of CM about the earth
Angular velocity of (XYZ) relative to inertial space
Angular velocity of satellite about its cemter

of mass relative to inertial space

Special attention is called to Figures 1, 5, 7, 8, and 9

in conjunction with the above symbols.




C. Derivatives .

The time derivatives of scalar quantities will be denoted
by d4/dt or (°) while the derivatives of vector quantities will
carry a subscript (f or r) to denote a derivative in inertial
space or & derivative in the body-fixed rotating coordinate

system. For example dgi_/d‘c.)f = d_@l_/dft;)r +o x H

Any other necessary notation will be defined in the text.




I. INTRODUCTIOR

" The many recent uses of artificial earth satellites which require

a particular attitude of the vehicle (such as the Tiros weather

satellites, the Orbiting Astronamical O'bse}rvatofy satellite, and those

mking use of solar energy) have stimulated interest in the satellite

attitude problem. In order to design an effective attitude control

system it is first necessary to determine the perturbing torques

acting on a particular satellite conﬁguratim and then to analyze

the effect of these torques upon the satellite's attitude.

The most important perturbing torques in any given case will

depend on the particular satellite configuration, the satellite's

orbital elements, and the mission of the vehicle. The sources of

attitude perturbing torques presently being considered are:

l.

2.

Earth's magnetic and electric fields

Gravitational fields of the earth and of other celestial
bodies

Moving parts on or in the satellite

Atmospheric drag

Meteoroid and Cosmic-ray bombardment

Electromagnetic radiation from tﬁe sun, earth, and
satellite

Non-uniform rotation of reference coordinates

Gyroscopic effects.

l.




2.

Roberson (_]_._)‘)Ae hes noted the first seven sources and has listed
some qualitative order-of-magnitude results. Kershner and Newton (2)
Qualitativeiy discuss sources 1-6 and 8 and includo.; .é. simplified
anelysis of the effects of magnetic tourques upoﬁ satellite spin.

Beletskii (3) and (4) considers the effects of gravity due to
a spherica.l ea.rth; a.tmospﬁeric drag, and coordinate rotation and by
& perturbation method he describes the resulting satellite motion.
Colambo (5), in & similar analysis, adds the effects of the earth's
magnetic field and the gyroscopic motion resulting from energy
diésipation due to internel vibrations. 1In a different approach,
Hagi};ara (§_)- linearizes the equations of motion and investigates
. earth's gravity, atmospheric drag, and magnetic field effects.
| Roberson (7) formulates the torques arising from certain types of
internal moving parts but makes no attempt to solve the resulting
equations of motion. The effects of diséipation of energy by
elastic vibrations induced by gyroscopic moments‘has reéently been
stud:ied by Tﬁcmson and Reiter (8) and Meirovitch (9).

The radiation effect has been noted by Roberson (1) but he
merely lists some order-of-magnitude estimates. Holl (_Zj._(_)_) s
considering direct solar radiation only, assumes the resulting
force acting on the satellite can be expressed as F = p_AC

ot

\

* Numbers in peranthesises and underlined refer to 'red‘erences'..‘
listed it the. Bibliography. '
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(A = projected ares, B, = radiation pressure in the vicinity of the
earth) where the "radiation force coefficient” C, is found to be
within the limits 0<Cf< 2 for several convex shapes. McElvain (11)
appears to be the first cne to derive analytical expressions for the
forcé and torque acting on an arbitrarily shaped body due to direct
solar radiation. He then determines, for two particular satellite
shapes, the change in the satellite's angular momentum necessary to »
maintain a specified vehicle orientation. There has also been some analysis
of the use of radiation forces for satellite stabilization, such as
that given by Somn (12) and Newton (13). A related problem of thermal
ra.dié.tion incident upon an earth satellite has received considerable
attention. A few of those who have studied the problem are
Cunningham (14) and (15), Katz (16), Altshuler (17), Mark and
Ostrach (18), and Wood and Carter (19).

With the exception of the paper by McElvain on direct solar
radiation, there appears to be no complete analytical formulation
of the forces and torques acting on an artificial earth satellite
as a reéult of incident radiation and there appears to be, without
exception, no analytical description of the effects of such torques
upon the attitude of the satellite.

The purpose of this analysis, therefore, is to attempt to fill
this gap by:

l. Deriving the forces and torques acting on an

arbitrarily shaped artificial earth satellite

as a result of: (i) direct solar radiationm,

(11) solar radiation reflected by the earth



eand its atmosphere, and (iii) direct earth
radiation. ﬁ |
Determining the effects of such radiation torques
upon the motion of the setellite about its center
of mass, specific configurations being used as

examples.




II. FORMULATION OF RADIATION FORCES AND TORQUES

Since Maxwell's formulation of the theory of electroamsgnetic
radiation it has been well known and often quoted that a black
surface (one which completely absorbs all radiation impinging on
it) whose normal mekes an angle B with the incoming radiation

experiences a pressure given by
2
P = (3'/c) cos B (1)

where J' = J/cosp (J = radiation flux) and ¢ is the speed of
electromagnetic ra.diation.f But this effect is not a pressure in
the usual sense of the word, rather only the normal camponent of
the resultant force per unit area acting on the surface. In
general the force caused by radi#tion is not normal to the receiving
ares on which it acts. The resulting force will depend on the
radiation flux and the orientation of the receiving area but it
will also depend on the radiation properties of the surface fi.e. f’ ,
o and 7).

The chief sources of radiation that will cause forces and
possibly torques on an artificial earth satellite are:

1. Direct solar radiation

2. Solar radiation reflected by the earth and its

atmosphere

* This effect was first demonstrated experimentally by Lebedew
(1901) and later in an extensive series of tests by Nichols
and Hull (1903).

5.




3. Direct radiation from the earth and its atmosphere

4, Radiation emitted by the satellite.

The anaslysis of the last case requires a knowledge of the temperature
in the satellite's shell and, in general, it is a much smaller
effect than the first three cases. There are special situations,
however, when this effect may be comparable to the other three;
for example, the pressure experienced by emission from a "black"
flat plate receiving solar radiation, and thus emitting an equal
amount of radiation, is equal to 2/3 the pressure due to direct
solar radiation. In general the satellite does not act as a
"black body" (as it will reflect as well as conduct portions of
the incident energy) end furthermore it emits radiation in all
directions, thus tending to cancel any resulting force, and for
these reasons this effect will be neglected in the following
analysis.

The first three sources of radiation are all exterior to the
satellite and are covered by the following general example, see
Figure 2. The incoming radiation of intensity I (parallel to El)
makes an angle Bl with the normal to the surface element dA which
nas radistion pfoperties _)9 , @, and T (where frat+ T =1).
The radiation, after striking“the surface, is partly transmitted
through the material, partly absorbed by the material, and partly
reflected by the surface. The reflected radiation (parallel to 22)
makes an angle P, with the surface normal. The unit vector 93

is perpendicular to n and coplanar with n, e

& and 92 and cen be

defined by the equation




&, = nx (e; x E)/sin B -

If the surface is assumed to be & specular reflector geometric

optics yields

The incident radiation produces & force

d?i = -(a+f) (a'/c) cosﬁdAgl

while the reflected radiation produces a‘ force

d.F_‘r = -f(J’/c) cos3 dAe,.

Thus the total force on the element of area dA is
= - t
aF = -(J'/e) °°356A[(a+f)§_l"f£2]
or, in terms of the unit vectors n and 33
aF = -(J'/c) cosp dA L(a +2f) cosp n + omx (g_lxg_)] .

Note the two speciml cases:
i. Perfect Reflector (P =1, a= 7 =0)
From equation (7)
aF = -2(J3'/c) cosaﬁdA n

and the total force acts normal to the surface.
ii. Perfect Absorber (@ = 1, N T =0)

From equation (6)

dF = -(J'/c) cosp dA e

(2)

(3)

(1)

(5)

(6)

(D




L. The solar radiation reflected by the earth and its
atmosphere can be represented by reflection from a
sphere of radius R with reflectivity P-
5. Direct radiation from the earth is not effected by
the ea.rth'é atmosphere.
6. The satellite's surface is everywhere convex.
7. The satellite's surface acts as & specular reflector.
8. The satellite has both dynamic and geometric symmetry
(z-axis is the axis for both).
9. Radiation flux is independenf of freguency.
10. Earth's orbit around the sun is circular.
Note that assumptions 4 and 5 are definitely intended for circum-
venting the problem of scattering and absorption of radiation by
the earth's atmosphere. This is a separate problem in itself and
there is no intention of considering it in this analysis.
The radiation flux at dA2 due to uniform, diffuse emission

from the surface element dAl’ see Figure 3, is

b 2
dJETl = ( €0 Tl/:tL ) cospl cosB, A, . (8)

The total radiation flux at d.A2 due to the body No. 1 is
Jo e o
J2-l = A; (e lcr Tl/j(L ) cosBl cosﬁ2 dAl (9)

where the integration is carried over the surface area of body No. 1
that is "seen" by the element of area dAE' That is, over all
elements of area of body No. 1 such that 0 & B, & n/2, and

0<¢ B, ¢ n/2.




10.

As an example consider the radiation flux due to the sun on a
flat plate whose normal is parallel to the line joining the centers

of mass of the two bodies. Referring to Figure 4,

= = * O 1 da .
J J ﬂL Cosﬁ (:OSB2

If R is of the order Re S1:.hen ﬁ2'?-'=0, and L ¥ R so that
- L, 2
(@ T /mR) /*cosﬂ da .
s A 1 =
s

and j; * cosﬁ dA is the proaected area of the sun as seen by

the pla.te , epproximately :tR 5’ thus

s==(0'T R/R) (10)

2
The total surface area of the sun is A_ = lmRs so that equation (10)

may be rewritten
L 2
= (e T, As/lmR ). (11)

This equation gives the flux of solar radiation of normal incidence
on a flat plate at a distance R from the sun (when R > R ). When

R = R, _ this is usually referred to as the solar constant (S ) and
its value is 2.00 gnm cal/cm min (21).

On the basis of equations (7) and (8) and the stated assumptioﬁs
it is now possible to write the total force acting on an element of.
surface area of an earth satellite as a result of the three sources
of radiation. From Figure 5, where the spherical model of the
earth and its atmosphere is shown as the earth itself

ar = dil + d.F.‘g + d{3

where

w - -6 (& )costutiepin + cosTuli-g) o x (€2 x ) A (12)




and the total force acts parallel to the incident
radiation.

If only the normal component of equation (7) is considered
and the surface is assumed to be a perfect absorber the "Rediation
Pressure" of equation (1) is obtained.

In general the rediation flux J depends on the shape, tempera-
ture, and emissivity of the radiation source as well as the position
of @A relative to it. Similarly f, @, and 7 for the receiving
surface depend on the temperature of dA, the wavelength of the
incident radiation and the angle of incidence, It is also possible
that the surface properties (including JO ,a and 7 ) of a
particular satellite may chaﬁge with time as a result of external
factors. Such a chenge in surface composition has been noted in
the first Soviet satellite by Yatsunskii and Gurko (gg).

In this analysis , @, and 77 will be assumed constant for
solar radiation, both direct and earth-reflected, while for the
earth's radiation a different set of values will be taken (jD‘,
a', 7') but they also will be assumed constant. The other

~assumptions made in this analysis are:
1. VThe trangmissibility of the satellite's surface is zero
( Pra-= 1).

2. The sun and the earth act as diffusely radiating bodies,
that is the radiation from these bodies obeys Lembert's
Cosine law.

3 EMissivify € sand absolute temperature T are constant for

both the sun and the earth (Gsun = 1).




is the force due to direct soler radiation,

d§2 == (&v‘-;;v%*s;)coszCosﬁ,[C‘f’S"ﬁ(hff)aM:;s;z (1 -f)ax(gxg)]o’ﬁ; A, (13)
Ae
is the force due to solar radiation reflected by the earth end its

atmosphere (reflected from a sphere of radius R), and

-7 ,
aF; = .ﬂ—:-—f 7‘;;5 }Cosg [""Szﬁ (1#5)0 +easf, (-Fn x (£ xg!]g/,qlec@ (14)
’44.-
is the force due to direct radiation from the earth. The integration

in equation (13) is over the surface area of the earth-atmosphere
mode) sphere seén by dAs and not in the earth's shadow. In equetion
(1%) ‘the integration is over the surface area of the earth seen by
dA3°_ Note that in general the extent of these surface integrations
will depend not only on the relative positions of the earth, sun
and satellite but also on the particular element of area dAs.

The unit vector _e_; in equation (12) can be replaced by the
unit vector g; as the ciimensions of the satellite are negligible

compared to r and Rs_ For the same reason and to simplify the

g
integrations each element of surface srea dAs cé.n be moved parallel
to itself to the CM, thus replacing L, 4, ;l, and Fa with L',
g', g;, E; in equations (13) and (14), see Figure 5. Also note
that s; (the solar constant at the satellite) appearing in
equation (12) can be related to S, (the usual solar constant) as

follows

2

L
Ss = ss (Re-S/Rs-S)
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= »
or 8, = SS/[}—2(r/Re~S) cos & + fr/Re-S) ] (15)
thus S; = 8 [} + 2(r/Re_S) cos & + O (ra/Rz:S)] . (16)

6
For illustration take Re-s =93 x 10 mi and r = 46,500 mi so that
equation (16) gives

3 _6
s = ss[1+1o cos T + 0(10 )J,

1
Because of this small difference between SS and S the latter
. 8
value will be used for the remainder of this analysis.

Incorporating the above simplifications into equations (12),
(13), and (1k)

aF = -S(—’){COS‘& (1+5)e +cos P, (- pPlox(es xn)]/As (7
--5 /”_L,z Cas{) cos, [c::sf;(/fﬂm‘eas{:' (- f)hX/«Q xaya/Aed/I (18)

j B o fees'E e +eas E l-ghon(Li) | dAdlh, . 19)
The total force acting on the satellite due to the three sources
of radiation is

F = drFr + ar + ar 20
~ Al 7 L\Z"Q A;—s (20)

*
where: Al is the total surface area of the satellite seen by
the sun,
* ‘ .
A2 is the total surface area of the satellite seen by
that part of the earth not in the earth's shadow, and
*
A3 is the total surface area of the satellite seen by

the earth.
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The total external moment about the satellite's center of mass is

M = [ r'xdF_ + r'xdfF + r'xdF . 21
— A* -— =51 LE — - /A* - _3 ( )

1 ~ 3
If the satellite's surface can be divided into a number of sub-
sections or if the satellite's reflectivity varies from section to

section, equation (21) may be replaced by

M= 2 'xdF. + rxdfF + S, r'xdrF 22
A’i 555, ZAZ 5%, A; 55, (22)

where _E_'li is the force due to direct solar radiation on the

surface A 52

E2 is the force due to reflected solar radiation on
i
the surface Ai’

‘1% is the force due to direct earth radiation on the
i
surface Ai’

1; is the position vector of the center of pressure of

and

the surface Ai relative to the center of mass of the

satellite.
Fquations (20) and (21) with equations (17), (18), and (19)

formally give tfxe éorces'a.m‘i torques acting on an earth sa:;:ellite,

under the stated assumptions, &s & result of direct solar radistion,

solar radiation reflected by the earth and its atmosphere, and
direct radiation from the earth. The surface integrations that
are involved for an arbitrarily shaped satellite are very compli-
cated (especially for the determination of EQ and 23) and except

for a few special cases analytical expressions for equations (20)




h'S

and (21) appear to be unobtainable. The two papers by
Cunningham (14) and (15), on a related problem, indicate the
nature of this difficulty.

Before proceeding to the anelysis of the effects of these
torques upon satellite attitude consider the following simple
example which will indicate the magnitude of the forces involved.
Consider a flat plate of cross-sectional area A situated on the
earth-sun line and with its normal directed towards the earth,
parallel to the earth-sun line, see Figure 6. As the plate is

not in the earth's shadow gz 1 and equations (17), (18), and

(19) become
F = (ss/c? A+ pin (23)
F /‘E—é}‘)fosﬁ'cos7c'a2 ;(/4- )dA. A I
Zp =‘_C7I'L'z , / Sé f < 4 (2)
He
4 ’ ’ ’
E, = ‘4(25%"_[_2) cosg Coszé (+pldPe An (25)

2
where it has been noted that cos fZ . 1 and that there are no
comﬁonents of force parallel to the plate because of symmetry.

These integrels have been worked out in Appendix A and the results

are ~
E = (8,/e) 1+ p)An (26)
E - -a(f 8 /c) 1+ f)LAn (27)
F, = -2( eec‘TZ/c) (1+PF)LAn (28)
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3/2
where I = (1/15k) [2(1—]:5) + 5 - (2 + 3K5) (1-K7) ] 9
-, 32 ’
-1/ 2 - @) (30)
k =R /r

e
and R has been taken equal to R (that is the spherical model for
the earth and its atmosphere has been teken as the earth itself).

For numerical results consider the following parameter values:

250%K, 300°K (two different values used)

Re=l+ooom
2
8§ =2.00 gn cal/em min
s
¢ =3 x 10°0 cu/sec
f =034
€ =10
e
™ -
e
U

5, 6742 x lo"sﬁerg/cxn2 sec C’Kh
P = f’z 0.

The results of substituting these values into equations (26), (27),

and (28) are listed in Table I, Appendix A for various satellite

a.lti{:udés.




III. EFFECTS OF TORQUES UPON SATELLITE ATTITUDE

In generasl there are many different perturbing forces and
torques acting on an earth satellite and the resulting motion will
depend on all of these forces and torques. All of these
perturbations are usually small, relative to the unperturbed
motion, and generally they are investigated separately with the
total motion being determined by adding the individual results°
In this. chapter the effects of radiation forces on the motion
about its center of mass of an otherwise unperturbed satellite*
will be investigated and, assuming no coupling with the other
perturbations, the results may be added to the already existing
equations for the effects of the earth's gravity, atmospheric
drag, etc. which have been analyzed by Beletskii (3), Colombo (5),
and others. Direct solar radiation contributes the‘major
component of force and it will be considered first.

A. Direct Solar Radiation

1. Derivation of equations

From equations (20) and (17)

= ..S —ﬁc::s’?z (/ff}ﬂ+Ca$?2(/‘f/”K(§sX"’)]C/As (31)

where A is the surface area of the satellite "seen" by the sun.

* The satellite's wnperturbed motion, M M = 0, will be characterized
by H being constant in inertial space and a regular procession
of the axis of symmetry about H.

16.
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From equation (21) the moment about the satellite's center of mess

due to F, is

M, =-§ )/ rx [costnp)a +cag (-plnx(es x n)]dAs  (se)

AT

The unit vector e' appearing in equations (31) and (32) can be
8

related to more useful vectors by referring to Figure 5.

R el + r = R e
8-8 =g - e-5 -s

or

o

= _(Re-S/Rs-s?EB - (r/ -

-] S "r
-1/2
but Re-S/Rs-s =[1-2fr/Re_s?cos§ + (r/Re_s?aj
and r/Rs_s = (r/Re_B) '(Re-S/Rs-S)'

Thus g; = Ll+ fr/Re_s?cosj + Ofre/Rz_s?] e -
[rr, g * o‘(rr“/xf~ R (53)

For r = 25,000 mi., r/Re_S = 0.00027. Thus this difference will
be neglected and g; will be teken equal to e .

Before proceeding to perticular satellite shapes consider
the following general analysis. As the only configurations
under consideration are those with both geametric and dynamic

sympetry it would be plausible to assume 31 of the form

) (Flgs + F K) . (34)
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The first term, - g F_:L e, would follow directly from equation (31)
if =0, vhile if f # O the combined result would apply es e
and k are the only preferential directions. Also because of the
syrmetry the CP will lie on the axis of symmetry and the moment

about the CM due to E‘l will be

yi_l = pkx F, (35)

where pk = p, the position vector of the CP relstive to the CM.

From equations (34) and (35)

Ml = -SFlp_ng_e_s (36)

—"

b
and finally p and Fl will be functions only of the angle between

&g and k, that is

e - -8 SCHOFERS (37)

vwhere cos © = k- (38)

e .
=5
The equation of motion about the CM is

amfat), = M (39)

an/at) + H=M 40

or u/ )r o x B M , ( )
with H=1I-°-
- 8

where c_os is the anguler velocity of (x,y,z) relative to inertial
space. Equation (40) may be written out in scalar form to give

the usual Euler equations
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A(dw [at) + (c-B)mygaz = M - i

1
planee) x (oOam, = 7 d .
Claw, /fat) + (B-A)qa = Mock .

From equation (37) M *k = Oand from the assumed dynemic
symmetry A = B, thus there is one integral of equation (39) or

equations (41)
- E-k =1h (42)

or mz = 8§, & constant.

But the moment _Lgl has been assumed to depend only on the angle ©
thus, if M.I. is derivable fram a potential, there is an additional

integral of the motion. That is, if

M) = -dv/de (43)
then %_[_i_»gs-g-@e*'V(G) = 1, (44)

which expresses Conservation of Energy in the rotating coordinsaste
system (x,y,z). Because of the dynemic symmetry and the fact ®,

i1s constant equation (44) may be rewritten in the scalar form
[ ]

B - 2Aw cos P H + ~[2AHoa?ecos A 0" Hi + EA(V-VO)] =0 (45)

where H_, V_, and )"o are the initial (or unperturbed) values of
H, V, and ¥, and ¥ is the angle between H and ®. Equation (45)

is a quadratic equation for H which yields

M :M[dﬁ)éf“;f _,_‘//*[ (Ag.mcos)')l_ zﬁggygoqr,_zﬂ 617.0% )] '] '(%)
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or H = HO {/7'- A;Z—)Q(Cosfocos,]:)‘ ﬁ;r/V-l/J-fO[%]J-O///ﬁ:ﬁ"%)}

(47)
and the positive sign has been taken for the square root so that

H equals Ho when J’ and V equal :f; and Vo respectively. From
equation (47) it cen be noted that there are no secular changes in
H to order H;l (Ml will be periodic in © but Vv will not necessarily
be periodic). At this point two different problems must be
distinguished:

1. ALk (cospe cosy) = £ (V-1 ) <</ (18)

e 0
This case corresponds to a satellite whose kinetic

energy of rotation about its center of mass is large with respect
to the work done by the external force. Note that V is proportional
to Ss/c (approximately 9.4 x 10'8 1b/ft2) and w_ 1is sbout 1°/aay.

For this case H mey be taken equal to its unperturbed value Hoc

i1, A}S(Cosf-Co:.)’,)u 7//\7(1/-1/,) = Q1) (49)
° o
This case corresponds to a satellite whose kinetic

energy of rotation about its center of mass is not large as compared
to the work done by the external force; for example, V being a small
quantity, a satellite placed in o#bit with an angular velocity
proportional to ago In such a problem the orbital motion of the CM
and the motion about the CM are coupled and a libration-tyﬁe
analysis would be necessary. An analysis of this type was carried
out by Beletskii (22) for the case of perturbing torques caused by

the earth's gravity.
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In the present analysis the conditions of the first case are
assumed and for a particular problem with given values of Hy» ete.,
the ektremmn values of equation (48) may be computed and compared
to unity. o

From eguation (42)

Hek = Cs = H cosg
where g is the angle between H and k. Thus for H = Ho

cos;é = C:s/HO
or g = @ (50)

its unperturbed value. The precession rate of the axis of symmetry

about the sngular momentum vector, W/ , is given by

¥ = 5/A
when the angular velocity of the plane of H and Es is neglected

relative to ¥ (see Figure 7). So if H = Ho

Y = HO/A . (51)

its unperturbed value. Thus there are no secular effects in the motion
of the axis of symmetry about H. Any secular effects in the motion
“-must then be confined to the orientation of H in inertial space. The

angular momentum vector may be expressed as Ho_l_z_ where, from Figure 7,

h = cosp e, * sinpy (sinh e * cosh 32),, (52)

Then, by equation (39)

dn/at) = M /H
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o at =
thus e (an/ )f 0
because e M =0
...s .—.l

But  dhe /dt), = h " (de_/at), + e (an/at).
and d.gs/dt)f = xe = -o e,

where w = w e_. Therefore,
—-e e =1

a. dat = - h- e
cosp/ )f w, b e

which upon substituting equation (52) becomes
du/dt)f = @ cos i, (53)

That is, except for the effect due to the rotation of Ss’ the angle
between H and &g remains constant.

From equations (39), (37), and (52)

- S [m@ne)/n,] me - a/a),

and - § ]’_F;L(e)p(e)/Ho] ke, = {‘5/"’/45/? Es * 005/"(5"?)}-

+co.;u% (Cos:\ Lot TN g, ) - Sine (~50n0) e, +caSXQ,)§/—£.|—
de o
# Singpa [ Cosh (SE2) 4574 (S5). ] } . (54)
But dgs/dt)f = wXxe = -oe
dg_l/dt)f = 0
d.ge/dt)f = E%ng = e

Thus equation (5&) leads tc three scalar equations

- J//%% # Gl S ees) = ) f%wj/fxgs) . g (55)
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S é@u% -/—S/z»yxcas/\% ot -5[5—-%‘:’—/‘7(&@,)‘ e, (56)

-&JCC’Oy-A COJ/{COS/\% +5//;05/'V/\%;— = —3[5":%9@//& €s)* =P (57)

Equation (55) is identical to the result already obtained, that is
equation (53). Substituting equation (53) into equations (56) and

- (57)

di  _ Fre) plal
Cos)\z- = -5/-7/2/%5—/—/&x§3)° g,-weao}b CosA siv ) (58)

A - Fle) s 2
.f//\/Ac;ff— = -g&ﬁ]/élxgs)- €, —tp C’o/h, svh,  (59)

Note that these are two equations in the one unknown A. This arises
because of the assumption that H = H B, when in fact the magnitude
of H is not constant but 1s given by eguation (47). If h is to
remain & unit vector the velocity of H must be perpendicular to H
and the axis of symmetry must therefore lie in the plane of H and
e, (except for the special‘ case u = 0), this is easily seen from
equations (58) and (59) by solving for A and equating the two
results. But it has already beén shown that the axis of symmetry
precesses about H with a rate \/.J , which is egual to HO/A, vhile H
precesses about e, with a rate which, from eguations (58) and (59),
is proportional to me and F;Lp/Ho. The potential V is genefal_‘l.y a
very small quantity and @ << HO/A from equation (48) thus A << ¢
so that an average value 'for A can be obtained from the above

equations by averaging over a complete rotation of the z-axis about

the angular momentum vector. Such an averaging process will eliminate
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the inconsistency in the equations for ™ In similar analyses for
determining the effects of other types of pertufbations upon satellite
attitude this averaging is performed at the beginning of the formulation
of the perﬁurbing moments. This, in effect, replaces the

instantaneous moments by an é.verage moment. This method is employed

by both Beletskii (3) and Colombo (5). With this in mind consider

cosh times equation (58) added to sink times equation (59), ‘thus
(/z: X-L@ﬂ‘i)[(&w\e coshe, ) (kxes) - &y Cotusmld ,  (60)

The average precession rate is

-
A _ _J e
JF = ZW £ /l}/ﬂ/é’/[(-/ﬁd_,ez-CaSAs,)-{éx_csjo/%-a)eeo}u s~ (61)
[}
vhere r(e) = Fle(w)]
and p(e) = »[e(y)].

But e, (lcce ) =k (e xe, ) and e (kxe ) = k° (e Xe;) so that equation

(61) may be rewritten

—_— /2’7
Z/% = - 2”'5/:, /F/&)/’/G/f(f’”/‘ev‘o:osz\ ) ﬁﬁé" & Corp swA (62)

end from Figure 7

k = (Cospceosp e @ompcas $) € + (cosg sippsiv A +
+5on f CoshsineY— Surv f Cosp Sim) esst ) e, +

-,L((Cosﬁ 5/74 cos)\ —‘54'!\/%5”\//\5!/\/%0 Sy ?{0090 COS/‘ Ces %/ €2 . (63)
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Since ¢ = ¢, fram equation (50), equation (62) is

A __ 3

Jt = 7w 4,

o )
flafplelfeasd-Sndcoty cost]d ¢ -t Cotes sam ) (64)

where p is considered constant during the integration. Thus the
motion of tbe satellite under the influence of direct solar
radiation can be described as an unperturbed motion (ie. no secular
effects) of the axis of symmetry sbout the angular momentum vector
which itself remeins practically constant in magnitude but precesses
and nutates relative to Es . The average precession and nutation
rates are given by equations (6&) and (53) respectively. If the
rotation of e can be neglectéd g_ performé a regular precession

(T p.o) about e with an average rate Ei'/dt)o vhich is given by
T

5—2—-0 =- EE_—//‘ £ fajlo/o)/éosg - s g cotu carsb/c/ ¥, (65)

2
Note that if the satellite enters the earth's shadow ( J = 0)

the motion becomes the unperturbed motion (l_v_ll = 0) and H is constant
in inertial space at its value upon entering the shadow.

2. Particular Satellite Configurations

a. Spherical Satellite - Radius R
The force due to direct soler radiation on a
spherical satellite of radius R and with surface reflectivity Jo is

worked out in Appendix B, the results are

FE o= - d (s5/c) A e_ (66)




26.

- 2
where A8 = nR , the projected area of the satellite as seen by

the sun (note the force is independent of )0 ).
! _ _
Thus Fl(e) = (Ss/c) A . (67)

Consider the following possible locations of the satellite's center
of mass relative to the geometric center of the sphere (CP for this
case).

i. CM at CP:

p(e) = ©
Therefo;'e ..Ml = 0, and the motion about the

CM is the unperturbéd motion.

ii. CM displaced from CP along the z-axis:

1. p=p o a constant

thus lﬁ’l = 5 (S /c)Ap kxe (68)
and V(O) = S (S /c)A p_ cos ) (69)

and equation (h}) is satisfied. From equations (53) and (64)

ﬁ_'_ = W, cosA | (70)

% Z- zr#/(SS)ASf[chf J/r/#@,m}acar%’/dgé weCO siv )

or; averaging over VJ

5(5) Cas¢ oo ectu 3md,

And, as H cos¢o = Cs, this may be written
0

%@- = —S(Tg)%’}& Cos?d -0, cov/"u.S//w\, (71)
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Note that the first term in equation (71) is a secular term while
the second term (due to the rotation of gs ) is periodic in p and A.

2. » = p(9)

Thus BE) = - ) (5[ p @Ne, (72)
and v(e) = (ss/c)Ks / p(0)sine ae (73)
Therefore ‘

-g% = e cas A .
:/- < Z_&os [r_« .l ,
a%: p "S(‘Z&) Z;_z,éﬁ’[ef‘ﬂﬂ[é'c.ge.mdcdajbcaﬂ/:/yﬂ’*.dec%w”/}

o

As an example to show that % does not always have a secular term

let p = p_cose, then from equation (63) -
Casg = &'. S = co:;lc::w f’ﬂd.my« cos ¥

thus V()= 3 (%) As 5’;29 (7%)

aod :% Y %a)é%%_?-zém/,gcas’;g-/) e cotusmd . (15)

Now the average precession rate is completely periodic in p as well
as having & term also periodic in A.
b. Cylindrical Satellite - Radius R and height h
The force due to direct solar radiation on a right
circular cylinder of radius R and héight h with surface reflectivity
f for both its sides and end pieces has been worked out in

Appendix C, the results are
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cos®@ = k° Es = cosg cosp + sing sim cos ¥
5 ’ 1/2
and sine = (acos Yy + beosy + c)
, 2 >
where a = -sing sinp

b -1/2 sindp sin2y

2 2
l-cosgcosp.

4

Thus the average precession rate is

g;- :-5(—?)2%/},?4 (/{;00}]" +r/,€’(,.f}_7;/— tee COtte S A )

” )
where I, =/(aacs'¢féao:¢,~c}é[cwg- x/nz;gca}‘u cos 5_#/4/}’
o

and I, = /?:/[4%_7-2//[3(’#/—2'7 // [ cosg cospt +
-:‘-JWA szycos ‘p‘/[casffsw/‘ca;u 'Zos}f//a/%

e Paddle Vanes
The forces and torques acting on a symmetric
arrangement of flat plates due to direct solar radiation is worked
out in Appendix D. The results are exactly the same as for the end
pieces of the cylinder in the above section.

B. Reflected Solar and Direct Earth Radiation

1. Derivation of Equations

Fram equations (18), (19), and (20)

5: _;6/ [(cf’ ?z cos7) fes /E' ’[cas’g ‘(r£)n+ cosf_‘: (-r)ox (L x 52/4,2]'?} dAs
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_/j_ = -5(%’/{2.% 5w9[(x+§f/_es- 31‘ fCo.ség_/f-
+T R 058 [H6)-2il0-F)] (1-F)es + 2 Casé _é]} (76)

thus ,,r/’g).-{%)[z Bh sme(1+ 34 TR Easo U-plffe)- 2406 - F) [ ()

Again consider various possible locations of the CM relative to
the geometric center of the cylinder (which is the CP).

i. CM at CP:
p(6) = O
Thus I_gl = 0, and again the motion is unperturbed sbout the CM.

ii. p = po, a constant

Then

M, (8= JE)pf27h swotrdpi rRYes ol rlf (246~ B} ks,

(78)
V(o) = 8CE) po {RH 1+ 37)[ 6- 4 sim28] +
A+ TRH1-p)f F5no Ma) £ o0 (6 - 2—”/]/ (79)
and equation (43) is still satisfied. Therefore
d,
# = Uy cs A

Y 27
and f\; :-JZ-%/D / Floy[cosd —.rwgccycosyds‘ -wcco},.sw/\

1]
where Fl(e) is given by equation (77). From equation (63)
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_/; = -///(—?’%;;)Caszf[aoszl(ﬁfyg * C'o.sfg///-f'}_gx (Lx 5}}744?];/,45
A A |

where K‘e is the surface ares of the earth-atmosphere model sphere
seen by dA; and not in the earth's shadow, AZ is the total surface
ares of the satellite seen by that part of the model sphere not in
the shadow, Ae is the surface aree of the earth seen by dAS, and
A; is the total surface area of the satellite seen by the earth.

It has already been noted that these surface integrations are
very complicated for an arbitrary position of an arbitrarily shaped
satellite (even with the assumed geometric symmetry). The analytical
description of EQ is especially complicated by the earth's shadow
for Veven if the satellite does not pass through the shadow the
reflected solar radiation which the satellite receives would be

influenced by it. In order to meke some statements about the

-2
form will be assumed for both forces

effects of F_ and _B:B upont the satellite'’'s attitude the following

= FE,B(Q'?Er + Fe’j@')g (81)

2,3
where the shadow factor é in g_g has been dropped for the time
being and ©' is the angle between e. and k. Because of the assumed
satellite symmetry this form will be correct for E} when the
satellite's orbit about the earth is circular (otherwise it would
also depend on r). It is correct for _EQ only when the satellite
is on the earth-sun line but it will serve as an approximation for
other positions of the satellite (in general it would also depend

on r, 8, and @).
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The moment about the satellite's center of mess will then

be

M5 = Pp,5 00 50 ke ©2)

where the separation distance p is also assumed to depend only on
@'. The subscripts will not; be dropped on F, M, etc., where it

is to be understood that the results apply to reflected solar as
well as direct earth radiation. Again, &s in section A, the moment

will be assumed derivable from & potential so that
M) = -9V'/9 e (83)

If the analysis is restricted to circular orbits there are two

integrals of the motion

H*k = h : (84)
- = 1 : &
or wz = B, a constant
1 '
— . - . + ] t =
and pEra - Erg + (') b (85)

which are exactly the same as equations (42) and (k) with @
(angular velocity of the earth about the sun) replaced by @,
(angular velocity of the satellite about the earth, constant for

& circular orbit). Equation (85) leads to the following relation

for H
HHof 14532 osreesih f V-0 o2 v ]

(86)
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vhere H , V;, and :f" are the initial or unperturbed values of
o
H V', and ¥/, and ¥ is the angle between H and ©. Sinilar

to equation (48), the case of interest is

ﬁ/‘f (cosF=cos7) - /-f; (V-] << / (&7

so that H may be replaced by its unperturbed value Ho° Note that

if equation (87) is satisfied equation (48) is also satisfied as

@ £{ ®. From equation (84) H-k = Heosg = h,

so ifH=H
(o]
g = g . (88)
[0

The precession rate of k about H, see Figure 8, is W' = H/A thus

for H = Ho
¥/ (89)

its unperturbed precession rate. Thus, as in the case of direct
solar radiation, there are no secular effects in the motion of
the axis of symmetry ebout the angular momentum vector. From
Figure 8, H = H h' where

h' = cosp' I + sinp' (sin\' J + cos\'K) (90)
and the equation of motion about the satellite's center of mass is

dn'/at) = M(e')/H,

/ ¢ , =k P /
or ~5/47u’;/‘é- Z+ co}a'(:w,\ ];‘-Co.s,\_k/zf- -#Jm;u/caf/\ J =

-57»//\'_/‘()%; Cos///g_d/,x__fj # J‘//\//d'[S/N/\'/I_«‘/J,X_U*CaSA//‘.%XIK)/

M) (51)
H,
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where @, is the angular velocity of (XYZ) relative to inertial space
(caused by changes in the orbital elements as a result of orbit

perturbations). That is

a te, It Ite, & ()
: o2 &
with We = svigaw Jé -JIND Jz.:’
- A o’w
Wp, T Cosi gy *t g (93)

sz = Swwi Sinew :,/2{_1 > Co.swjé

Equation (91) thus leads to three scalar equations for the two

unknowns ' and A':

d ’
Z ;-%_ ~cdy st casN (94)

: Vs ’J 4 ’ /dA/ M
Cosps .fﬂvl ;f;i +:»%cosA‘:,—£ =

Smpeos) e cosp” (95)

ooV D sk 2 YKy o v ol (96
Cop'@sd =p —smpuseJg = @ T4 '
The reason for the inconsistency in these equations (three equations

in two unknowns) has already been explained. To determine average

rates of cha.nge; equations (95) and (96) may be combined to yield

¢/X

M - - Jn W,
‘Z/_— [cos,\f .S‘/A/A/(/"M)f Ca/:[(&,.scos)\*%f /2577)

Note that in both equations (94) and (97) the effects of the
perturbing moments contribute only the first term on the right hand

side of each equation, the remaining terms are a result of the
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rotation of the (XYZ) coordinate system due to perturbations in
.fZ, w, and 1.

From equation (82), M = F'(6')p(6') k x g, thus

M. I=F(0)p(6')cosfk.J
M- J=F(0)p(6')(sin £ K -cos £I): -k (98)
M. K=-F(6')p(6') sin £ k - J

Thus eguations (94) and (97) may be written
e FlEpls)
C{t T ,ﬁgJ%yu’

aN _ Flpe) e, e
G = R feitetsmcf 2y e o] 4

/

scf ks - “r SN+ e cash (99)

ey

we, = oo [up Xt oo

where @ , ® , @ are given by equation (93), while from Figure 8
P1” Po P5

k = {cosgdta 3/ SiiB St cas)Z +(casd :}a ‘Sire A4
v St Cos s i = S/n/CaV’LywA'C‘oS W) ] >

/

s ; 1 .
A'0os) = s s A s = Sl &y’c:m\ et JK

-
—~
0
D
th
k
&
\\5

(101)

In order to determine the secular effects in equations (99) and
(100) (a2nd to clear up éhe inconsistency in these equations) it will
be necessary to replace the instantaneous moments by the average
moments. This is achieved by averaging the perturbing moments over

1
a complete rotation of k about H (' ranging from O to 2x) and over
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a complete revolution of the satellite about the earth (f ranging
framn O to 2x). The values of dw/dt, di/dt, etc. to be
substituted in equations (99) and (100) are the average values
and thus will not be averaged here. The average rates of change
of u' and A' are

G’ ELIA ot 71 cas i
ot = 2/ Ho Sop Casf (I 74 e v ey 7 (102)

i%\ M_L/f ;i‘j/ff[éﬂb/][- ,4\/5/"’7[/«' fg;/‘f/p.f/»vx!.zm/]]mé ﬂ//;d;'
4 vl

£y = cotu'fule coshe e Sink]  (103)

At this point the effects of each force, §2 and EB’ can be
analyzed separately.

i. Direct Earth Radietion

'In this case the everage on f 18 from O to 2x

because the earth's shadow has no effect. From the above equations
J 4

7
% = &, -edt [@; ¢o5M 'y g 5] (1205)
as the effects of the perturbing moment g% are completely periodic
in the true anomaly. The satellite's motion for direct earth
radiation, under the stated assumptions, can be described, there-
fore, as an unperturbed motion of the axis of symmetry about the

angular vmomentum vector which itself remains practically constant
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in magnitude but changes its orientation relative to (XYZ) as a
result of orbit perturbations only.

ii. Reflected Solar Radiation

This falls into two claesses: a) satellite never
enters the earth's shadow, and b) satellite enters earth's shadow

at £ = fl and leaves shedow at £ = feo

a) No Shadow Effect - The effect of the perturbing
moment Mé is completely periodic in f and averaging over f from O

to 2n gives

L
¢
c—/—I _ Y ’ Aj

7 = Wy -cot [«p, cos) Fendy I (107)

)

), 5o A £ eay COS Y (106)

the same result as equations (104) and (105).

b) Satellite Ecliﬁéed by Barth's Shadow - When the
satellite enters the shadow Eé = O so that the average over f is
not zero even though the effect is still periodic in f. From

equations (102) eand (103)

</ !/ 7 / ’ ’
ﬂé == "";”/ =344 %fé’?t//]p[d'/«#]/é-_] JY = gy Sew )"t ey, CoS)
d 471A453y/' 3 (108)

L NP te)ffcasiflcosk-carg ) K + (smof -sim ) )T [ #
JE fi%dwy' /?[9(44//0[6 # {as ‘ A / 2 _/

+ 3 X (cosf - cos,g)gf.g dY + Ly = aojufédsaa;/\/,b ety swA_’/

(109)
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wheré u' is considered constant during the integration. These
integrals can not be worked out completely until particular forms
for F;(?’) and p(@') are specified. The satellite's motion due

to reflected solar radiation is , therefore, an unperturbed motion
of the axis of symmetry about the angular momentum vector which
remains approximately constant in magnitude and whose orientation
relative to (XYZ) is given by equations (106) and (107) if the
satellite does nét pass through the earth's shadow, or by equations
(108) and (109) for satellite eclipses.

The sngular velocity of (XYZ) relative to inertial space, @,
depends on orbit perturbations and for any perticular satellite
orbit the important perturbations will have to be worked cut by
same appropriate technique in order to determine d {1 /dt, dw/dt, and
di/dt. As an example, it is well known that the oblateness of the
earth produces, among other effects, a secular increase in both (2

and o (see Kozai (23) as an example)

af) fat = -(eng ﬁi/peP)cos i (110)
/st = (xe B/pP) (5cost - 1) (111)

where p is the focal parameter of the orbit, ‘ﬁe the equatorial
radius of the earth, P the orbital period, i the inclination of the
orbit to the equatorial plane, and £ & dimensionless parameter

which characterizes the oblateness of the earth ( € = 1.6331 x l()‘3

).

The derivations of eclipse conditions, duration, and geometry

are listed in Appendix E.




2. Particular Satellite Configurations

As a result of the above analysis the only cases of
interest are satellites receiving reflected solar radiation and
passiné through the earth's shadow. But no shapes have been found
where analytical results for Eé and Mé can be computed (by analytical
resuits it is meant that gé and MQ can be determined as functions
of the satellite's attitude and position relative to the earth
and sun). For the sake of an example, therefore, consider

Fé(e*) = F, and p(6') = p_, both constent. Thus if the satellite

enters the earth's shadow at f = £, and leaves it at f = £,

X - EZ’- ,'r{as/—cas/z’)dos%+Kr///7{—fxﬂrfjdos;ﬁ°aa;u’<:as)j+-

A ‘/’J/"/ - C'O?}O/[Q)J c.og}./+ “)/’z 5‘//\//\] (113)

Note that the first term in equation (113) is a secular term.




IV. PARTICULAR SOLUTION

In the previous chapter the effects of radiation torques upon
the attitude of a satellite were investigated by a perturbation-type
anslysis. In that analysis it was necessary to make certain
assumptions about the initial conditions, see equation (48), as well

as to average over certain of the varisbles. The reason for this

was because of the non-linear character of the equa.tim}s of motion
about the center of mass which do not, in general, admit analytical
solutions for an arbitrary external moment.

AIn this chapter the possibility of a regular precession of the
axis of symmetry about the‘vector g_s vill be investigated for the
case of direct solar radiation. In order to determine if this
motion is a particular solution to the equations of motion the

externasl mament necessary to maintain it will be derived and

compared to the results of the previous chapters.
The angular velocity of (x,y,z) relative to inertial space

can be written as

5t o ke )

where w is perpendicular to k. Then

dfar), = @ xk = oxk
but kx(dk/at), = kx (@xk) = o
h = + ©
thus | o ® z_g k x (dg_/dt)f (115)



The angular momentum is
E=Cok + A_k_x(d.g/dt)fa (116)

The equation of motion about the satellite’s center of mass as &

result of direct solar radiation is

d/dt[A ;hc(dydt)f + Cok| . =M. (117)

The particular sclution sought to this equation, see Figure 9, is

e = QO
w = 8 , (118)
z
dk/d = xk + xk
k/at), = () exk X

where _CZO = 7 (a constant) is the precession rate of k about
Es and @é is the angular velocity of €g° Substituting these

conditions into equation (117) leads to

Cs[f)og;x/ﬁ +<_,gex;__é] +A»_€X{-Q°[(@¢_X ?,;‘Xf+—§5x/-(29§sxi?+
o=6,

Farxk)) + we X (R Esxk +urxb)} =M (a,) (119)
6=a,

wh ds = = 0,
ere gs/dt)f @ xe  end dg%/dt)f 0. Expanding the triple

cross products in equation (119) and collecting terms one finds
[-Qo {“Cs ~A[2(We-k) + 2, cwé]} ex k +

+[Cs-Alweb)Jwex k] =Ma), (120)
o:4,

Thus, for a regular precession of k about gs while gs rotates with
a constant angular velocity @, gl(sg.must satisfy equation (120).

But for direct solar radiation, under the previously stated
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agssumptions, gl_l is of the form

yl = F (e)pfe? e xk . (121)
So that M (e ) = F (9 )p(G )(e xk) (122)
O

which does not have & canponent w xk and thus does not satisfy
equation (120). Note that the term [05 -A(g_.)e . _15)] @ xk in equation
(120) is zero only when ® - k= Cs/A and ICs/Amei < 1, while

@ xk is never zero, unless @ = x/2, as ®, is perpendicular tg e

A. Regular Precession

From equations (120) and (122) it is observed that a regular
precession is a parbiculér solution for the case of direct solar
radiation if _c_b; = 0. That is over short intervals of time, say a
day or less, when e may be considered constant in inertial space
equation (122) satisfies equation (120). If ®, is set equal to

zero and equation (122) is substituted into equation (120) ome finds
2 '
[ce 02, -pcose, L2 ¥ (0)(e)] (e gkl g = - (123)

So if k is neither parallel nor perpendicular to e, equation (123)

is a quadratic expression for the precession rate n o

O = Cs #JC?s*-4Acose,Ep

(124)
o ZA Cos é,

or

(, = pommy [1 20~ B2 ta)pt6) ], (29)
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The regular precession rates given by this equation are exactly the
seme as those for the Heavy Symmetric Top with one point fixed in
which case Fi = Mg (M = mass of the top and g = acceleration of
gravityj and p is the distance of the center of gravity from the
fixed point.

The quantity under the radical in equation (125) is approxi-
mately equal to unity(Fit\rSs) and thus can be eXpanded to give a

"fast" and a "slow' precession rate

- Os /ao) (8,)
y F(@JE(B&) /4&056
_G,,Z 0[ 735 F, a,',c a,,j (127)

For this particular case (9% = Q) there are three integrals

of the motion

%g_ogs+v=hl (128)
H: e =h (129)
H - k = h.. 130
2 3 3 (130)

Equation (128) is Conservation of Energy and follows from equation
(4ht), equations (129) and (130) aere Conservation of Angular
Momentum. These integrals may"be written in terms of Euler angles,

see Figure 9, as follows
2 2 2
1y (6% + 32sin"e) + %—c o +V(e) = B, (131)
z

2
A sin © y + Ccos® w = h2 (132)




L3,

c()?, +ycos) = Cw = h3 (133)
2 ]

The particular solution of a regular precession of k about Es is

e = ©
o

-0 ' (134)

~ ¢

°
@ = 8
where 'Qo is given by equation (125).

B. S‘bability of Regular Precession

In the above section the conditions for a regular precession,
equation (125), have been determined for the case of direct solar
ra.d:l.;.ticn wl;eﬁ Es can be considered constant in inertial space. It
is n;)w possible to determine the stability of this motion, in the
sense of Lyapunov, because of the existence of the integrals of the
motion. Consider as the unperturbed motion equations (134) which

will now be perturbed by instantanecus perturbations x

i
e = 8 + x
o 1
° = +
4 ‘Qo X, ‘B‘)’)
Qz = g + x3
0 = x
k
and the stability will be investigated with respect to xl, Xy
x3, and X),-

Consider the Lyapunov function L



bl

2
L(xl,x2,x5,xh) = KL +KL, + K3L5 + KL‘LL3 - L, (136)
where LO = /(,{ %A(.Q:.S/Nzeo/ +ié Cs*+ v/@a)_}) 7+

4Ky [Amg, 2,4 (scoss,] + Kys + Ky 52

L
H

L = b 2 F AL (B x) s a,x)] +

/ 2
# 5 C(54%) + V/6,+x) 37)

L, = h A S‘//v?/@*)(;)(ﬂ,*lxz)*ﬂ “0S(6,4x,; (54 X3)
L3 = 8 + XB

and Kl’ K2, I%, K.l+ are constants, yet to be determined. Assume that

V(QO + xl) can be expanded in a power series in X with the

coefficients depending on Qo

V(e, +x,) =8 (8.) +a (8)x) +ay(8 ) +... . (138)

8ince L(0,0,0,0) = O and dL/dt = O (L, Ly Ly being integrals of

the motion) the sufficient condition for stability according to

Lyapunov is whether L is positive definite or not. This can be

determined by expanding L in terms of Xy5 Xp x3, xu and retalning

only up to second order terms, (24). That is
L(xl’xE’XB’xu) = X [K, AR, (Co56,- so~s,) - > K,(sctose, +
by k AR (cose,-sna) + K oy ] 4% (3 K Asin*s, )+ Xs (Ky# 7 K. CJ+
# Xe (A G [K.Cs + kg Ceosd, #2445 # K5 [#hy [K A2, 578, +

+K, A sw’é,] * X [ & AR s5i178,0058, + (139)




ks,
+2 /(2;4.(2, 51 9,8056, =~ k3 (s swé, + K, 0,]1‘- X, X, [P K Aswme coiee

+2K ARl smé,cos8,]- X, X3 (K, C s 8;) + O(X‘-z){;) .

= = - ® - + -
Let K, = 1, K, N o Ky =08 +C ﬂocoseo 28K, and note
2
from equation (123) that A.Q.o cosd sind - Cs D.osineo +M( ) = 0.

If these relations are substitutelinto equation (139) one obtains
L = [5 A0 sins, + 4 cot g Mls) @y fx} + LAY X3 +
+ (/<4+2if)x§ + 2 AX; r[a+MB)]x +
+ X 4 CR, sevs, + DX} x;).
| (140)

From equation (138) JV/ 9 x, = (dv/de) (2 6/ x,) =
a, +28x + ..., but 9/3::1 1eothat AV/d0 = JV/dx,
-M(0) and al(eo) = -M(Qo). Thus the term in x, drops out of the
above equation and the condition for L to be positive definite is

supplied by Bylvester's Thecrem, namely
(1) 7 ARZsw+ 3 cotg,Mled + 2,(4,)> ©
(11) Smwg, #o
(111) 34 B[ 5 ARZsmY, + 4 Cot4, M) +@y(8)](FC 44, )—
-éACZ_Q,z s~n'8, >0,
But if sing # O the third condition is easily satified as soon as

the first condition is satisfied, Kh still being arbitrary.

Stability, therefore, reduces to the two conditions
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sin-0_ £ 0 (141)
. -2’-/4 _Q:S'/Nzéa s 5’- cote, M) + az(6) > 0 (142)
where M) = - dVv/de

2 ,
= + .0
v(eo + xl) a, (oo) ta (90) x, + 8, (e,) xq
and al(eo) = -M(Go) .

In order to illustrate these equations consider the case of a
spherically shaped satellite with its center of mass displaced a
constant distance from the geometric center of the sphere. From

equations (66), (68), and (69)

FLo= -5,/ K g
AONEEPIVEE S
v(e) = - s(SB/c) Kspo cos 6.

Thus F. = (8 /c)K , M(6) = F p sind, and
usl— scs,M -Flpos , an

M(e ) = F.p siné_ (143)
| L .
v(e, +x) = Flpo(_coseo - x,81n6_ - %xl cOBO_ + ... _] (1h4)
1
a.nd.al(eo) = -Flpoc9seo = -M(e_)-

Stability, therefore, is determined by equations (14l) and (142).

1 o1
But for this case -é-coteoM(eo) + 32(90) = 5 F,pcos8_ -

- -JQ_T;LPOCOSQO = O and this regular precession is stable in the



L.
Lyapunov sense if

sind # 0
[}

(145)
%A.QE gin®e > 0
s} [¢]

where {0 1s given by equation (125).
o




REMARKS

The average precession and nutation rates for reflected solar
end -direct earth radiation, equations (102) and (165), can be
transformed to the (39’21’92) coordinate system and added directly
to the results for direct solar radiation, equations (53) and (64),
to give the total perturbation. This transformation will involve

“ay/at, I /at, (upl, cnpz, QP;.’ 0,0 1,48, A, w, and, in
addition, the angles p', A', etc. will have to be expressed in terms
of,the angles p, A, etc.. Such a combination may be necessary in
order to obtain more informétion about the motion but for the
present ahalysis it would only obscure the results.

It should be noted that all conclusions based on average
precession and nutation rates are applicable.only to the average
motion. The averaging procedure is intended to illustrate the
presence or absence of secular perturbations in the attitude motion
and it does not necessarily indicate the same for other types of
perturbations. These other perturbations can be found by studying
the non-averaged motion, for example equations (60), (99), and
(100) as opposed to the averaged equations (64), (102), and (103).

For a particular satellite configuration with given initial
conditions equations (53) and (64), as well as equetions (102) and

(103), can be integrated numerically to give nutation and




AFPPENDIX A. FORCES ON FLAT PLATE SITUATED ON EARTH-SUN LINE

| From Figure 6 and equations (23, (24), and (25) the three

P components of force are

_F,: = (i—i)(/-/-j’)/q!_? (A-1)

—S.S ’ . ’ 1
I~ = - (/CJ;L,Z)Cosﬁ 40523052;2(/,70/.7/4:/)5_1 (a-2)

-
e .
- et g, 22 y
-/‘L; - - (;Z_%cf/)g,,g&.:é(/aﬂfjoﬁe/qf? (A-3)
Ae '

For this particular example let the spherical model representing

the earth and its atmosphere be the earth itself. That is R = Re

and then the surface integrations for g‘? and 23 will be over the

same sphere.

Earruy

Note that in both integrations the portion of the earth "seen"

by the plate is the spherical cap defined by the angle B (cosﬁm =

50.
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precéssim angles as a function of time (or same other convenient
parameter). Such an analysis would campletely determine the
satellite's attitude motion as a result of the radiation torques
and itwould also indica.{:e the dependence of the resulting motion

upon the initial conditions.
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Re/r) , 8180 note that there is symmetry about the line joining the

earth and the plate. From the above figure

Cos ), = Chs.;é’
Cos le -2 _/ie,cas’é

cofy = (B (Bl
L/Z - /€Z+/Zz. 2/Zl(7ef'_Q%
AAe = 277/625//\’/50;5

Thus the forces become

= (-?—-) ( /4}’},4 n (A-4)

5 - -Z(ﬁa{y(/*ﬂ/)[ 7 éA-s?
£ =2 / = 7‘4/(/*/‘/41’2 f (8-6)

o
cosA (casf k) (I- kc:ss}) 5/,% a% (A-7)

(1 +k3- 2 k cosfB)72

= k¢

B

(Co}-k)(/- eo:/S)z ,

o / (1442 2 kcas/é)s/z > N/fﬂ//é (4-8)

l:
|\, J\l

and 0 ¢ B & x/2forR € r<mo, k=R/r
T =é[..72 + L7+ T +_7"]
where 7 kﬁfff%[/+k22,écw/!]%5- 3[('k/ -'(/—;(’)4]
0+2é//w/sf7f[/+k‘zkco /5]0/’6’ (/+2k’/[ [& //_k;,jiiz
- (- k)'3+3kz[// k’) ~(r- k)’]f



52.

] = ~k(2+¥) 555/35/1%[#/( ZkCo/]a% -,e/z;;k}/\,k[k’// kf
~(- k)/+ 2 [kl-KT2 (- K’)/-fj ,[// K% //"(’)./}

,éfcis/dszzfdf/ié?ékdos/é]# k / 7 LKk 9" (/«k) ]+

e (R R TG 1 B sV A 2 [0-4T 04

Thus _Z:A 4?.72 ﬂz[/-(/-k"’}%_/, (a-9)
7= 4T +I + T+ 1]

where

= “lé Cos, 5’73[/*[ Z'(’eo%/a% //+2,é/]z:

] ( ik cos’ 5/75 *Xf-z/%co}g]c//é }%—i{éj ]2

A "-/f/&fﬁ cosiBo '74[ ﬁéizécajéyd = “’%‘zﬁz‘ [f
7 /vé/ios/éslf/vﬁ[/»% 2hee ]J/f A RIOUN,
+3[RO-RTE (-7 216 /4/ ~(1=K)] *

+ 8, [K0-47"01-1] 2, [ 1-4T™ (1K)
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Thus
o ¢ 3/2
/- 7 = L 2 /—k’/fr é'/é 2 /27‘3/42///—/49 . (a-10)

The results of substituting the parameter values from Chapter
II into equations (A-4), (A-5), and (A-6) are listed in Table I
where h is the height of the satellite above the surface of the
earth (h = r - Re)“ Note that gj has been worked out for two
different values of T_ (250 and 300°K) to show possible extreme
values of this force for thé current range of temperatures for

the earth if it is considered to radiate as a black body

€ _=1).
e



5k,

Table I - Forces on Flat Plate Situeted on Earth-Sun Line

r ho| F /A F_/A (F3/A)2500 (F5/A) 500
mi. | mi. | 1p/et? /et 1b/£t° 1b/rt°
L4000 0]9. h-xlO"e 2,13 x10‘8 1,02 x10-0 |2.12 x10"8
4050 50 | 9. l;xlofs 2.12 x10'8 1.01 x10‘8 2.11 x;Lo‘8
4100| 100 9. kx10-8 | 2.10 x:Lo‘8 1.00 x10"8 2,10 xlo'8
h2oo| 2001 9. 1|-x-10"8 2,06 xlO"8 9.93 x10- " | 2,06 xlo-8
43001 300 9.,1+x10-8 2,02 x10- 9. 70 %10~ | 2.02 x10'8
4400 Loo | 9. lucm'8 1.96 xlO"'8 9. b8 x:Lo-7 1.97 xlo'8
14500 500 | 9. hxlO‘s 1.91 xlo'8 . 22 xlo“7 1.92 x10'8
4600 600 | 9. ux10*8 1.85 x:Lo"8 8.95 x10“7 1.86 x10'8
4700 700 | 9. kx10-0 | 1.80 xlO"8 8.7% x107'|1.81 x10-8
4800 | 800 | 9.4x10-8 | 1.7k x10"° |8. 50 x10™ " | 1. 76 x10'8
40| 900 |o.x10® [1.68 x0-® |8.22 x0T |7 a0
5000 | 1000 | 9. 1+x10'8 1.62 x:m'8 8.00 x1071|1.66 x10'8
5500 { 1500 | 9. hxm“8 1.38 xlo‘8 6. 91 x10- " | 1. 43 xlO"8
6000 | 2000 | 9. l+x10‘8 1.17 xlO"8 5.99 x10- | 1.2k %10-0
6500 25001 9. lnclo-8 1.00 x10‘8 5.21 x107 " | 1.08 x10'8
7000 | 3000 | 9. hx10-8 9. k6 x10“7 L. 58 x10'7 9. 53 x10'7
9000 | 5000 9°hx10‘8 5,14 x:m"7 2.86 xlo“’7 5. 9k x10~ '
14000 | 10000 { 9.4x10-8 | 1.98 x10-' {121 x10- |2.5%  x10-7
24000 | 20000 9°l+x10‘8 5.88 x10'6 L. 08 x10'6 8.48 x10'6

Ra = 0 ﬁ:Re,JB - 0.3k, )°=J°""‘ 0, ee =1, T_ =250, 300,
h = r-Re.




APPENDIX B. FORCE AND TORQUE ON SPHERICAL SATELLITE AS A
RESULT OF DIRECT SOLAR RADIATION

L 4
From equation (20), with e replaced by e

f:.-'aY%/ [aaszz_,//#f/_’! 7 £oszz(/-f/_/_ﬂ’/§sx‘_"}/a//4$

From the figure above
1 = Cosfes+smflCosee,»smweg,)
&= 5,,75;3./. 607?5 {Co&x &, +SiVX _c_f’zj
oSGy = p+ €5 = cosgsrn sm@’:m% (256 casx4ImGsmsi)
4/45 = /?%S/N/J/Jé
2= Rn

The coordinate system (g_l, ). _e_3) is arbitrary, thus orient it

80 that e = eE ° Then

25
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7 7
_{/c = = / %}//;“V//*f/i’v‘“s/// "f/!_’/\?_@sxdﬁzsw/c/;/da (B-1)

Zz
= -2 SR 3wt feosttssheccspor ] ¢ <,
F =278 REZ) [ (s 00-1)] =
£ o= -J(?SS//J:, €< (&-2)

where K; = ﬂRe, the projected area of the satellite as seen by

the sun. From equation (21) and (B-1)
27 5

r, |
M= -5/ %ﬁ@{%’ bl cosf (=gl (exm)] sv B dE de (5.3)
or _/I_/I;D/ - _J/QS(?-%) /_ﬁqsgxsm%gx[gx/gxaj]/ c/;/c/e

and Ml(o) = Q. (B-4)
Thus point O, the geometric center of the sphere, is the center

of pressure (CP) for this case.




APPENDIX C. FORCE AND TORQUE ON A CYLINDRICAL SATELLITE

DUE TO DIRECT SOLAR RADIATION

Consider a right circular cylinder of radius R and height h

with reflectivity fl for its sides and fa for its end pieces

12
2
T < §#—e &
dAs
R -—

hf‘n\* 4 >\'J ’
f/i\)”f'
From equations (20) and (17)

£ = =3B [es0,(rrIns cos G-l lea)] IA

a) Sides - Reflectivity fl'

Nz Cose g + S 4
L,z Cass k + smvéfeo 4’.«3,74,')
c"-’?g S NG =SmE (cas+ ce:7§ +S/rvo<5/'78)

ox(EXn) = &c— Cos’le 7
dA = Rxdz

where -h/2 £ 2 £ -h/2, B - nf2< a 4B + =/2 are the limits on

z and a for the sunlit portion of the cylinder's sides.
Integrating first over z

51.
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¥ 3
f; = - J(%//?h L 1-F)Cas g CH+2f COSZZ g]c/o(
then over o -é)!

£ =2 E)Rhsmefi-rr) e vy swa fces’s » 2 (sm s - e f)eosts +
A :Z: 5//\7{6’7! ] A 47_/—-3? (SW/‘AK Co.s%ﬁ'm% va Jf Sroif les’ ;‘Z:////%J; / ]
£ =-21 sz [11-p)e,+ Fromeleosss w%')f

But e, = cos@ k + sin6(cos p i + sinf j), thus F, Decomes

1

_@:-J/%/?/?A.Sfﬂé’[/ﬁéﬁjs, -j-f-tﬁ aosaf/ (c-1)

b) End Pie;es - Reflectivity P

Only oﬁe end piece is seen by the sun and the force acting on
it is the same as a flat plate of area nRE whose normal mekes an
angle @ or n - © (depending on whether the top or bottom plece is

seen) with the incoming radiation. Therefore

f'; = -5{%}7@%@5 :9[4/9}*2#/6' é{’ ')//?/— 3)8s +2;; aosa‘é](c-z)

which follows directly from equations (20) and (17) where

2
’22=0,n-9;p_=§,-5;and ﬁdA=nR..
1

The total force acting on the cylinder as a result of direct

solar radiation, El’ is

F=F *F - (c-3)
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The moment due to 31 about point 0 (geometric center of the

cylinder) is
A =A/}'X{/,;' +/ ?é[//@)-?%//é-zi’/]//_éx £
and r' ='R(COB(’!:I. + sinag_) + z k, thus

_/11‘3( a}:—é{gjﬂ [Rg (Coswivsmiglpz g] x[@s?z (ne)o+(1-f)t0s &9 (::xa)]c/As
integ'ati;z; f;rst over z

M (o) = -5/15—1) /; ¥ /c'os-r,c'*meff}x[c'af 2(rf)1 +¢25),(1-r3)n x/;,xa)]dA;
pe )

Note that cosa¢ i + sinad j§ = n so that
O x[ees™le (1) n +CosQlinm)ax(exd)] = (-17) CosTp O X Eg
%

and M ,S/q :-é’(?.)k'[{/- 1) |56 cas(x-p) [Ce55imai Cass cosa f + 6 sl b ]Jq
-%
2 <S(2) T (g macess(onp i -cestd)
M, (0) =-S5 (Z)7R i’fe(sw/d:'- st ) (e-r) (c-1)

If fl = fa, gl(o) = 0 and point O is the center of pressure

for F. otherwise the CP is displaced from point O a distance p such

1
that
M (0) = M(CP) *+ pxE (c-5)
but M(CP) = O by definition, so if p =p k
P = H(e) (c-6)
kx £ .



APPENDIX D. FORCE AND TORQUE ON PADDLE VANES DUE TO
DIRECT SOLAR RADIATION

Consider a symmetric arrangement of flat, rectangular plates
all of the same dimensions. The surface reflectivity will be taken

as f , on the +z side of the arrangement and fe on the -z side.

<
s

From equation (20)

F=-3A (S)/[///é/ Wo-Z)img)cese b+ (1-fr)eoss fx(sx k)] +

+H/B'ZZ/[-//+/:}C’052£é ~(1-f2) CosO f x(gsxé)j/ (p-1)
But kx(e xk) = e ~cosek, thus

F -T2 )/g ccse [ [HI5)- HIB-Z ) 1-7) s 4 2 €es & ] —
~Hle-T) [0 &+ 2p cos0 k] -2
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The moment about point O is

£ .,
m(0)=§££x5=a (D-3)

because of symmetry. Therefore point O is the center of pressure

for this arrangement.
If it is necessary to determine the moment about point P as

a result of F

M(P) = -pxF | (D-4)
where p is the position of point P relative to point 0. For P =

Pk

M, (7= 324, peasefLuta)- 4lo-3](1-1.) - Ho- 2) =)} £x %

If the reflectivity is the same on both sides of each plate

(fr=fo=f)

F= -5 cose] ti-ple, s 2p casol J[ W) - 2#(6-F) ]  v-6)

and

,/‘_7, (7 = Jé‘-}/)t P Cosé //j‘} [ /7’/5/-2,?/5- 2;-7 Z] kx_e, . (1?-7)



APPENDIX E. ECLIPSES BY THE EARTH'S SHADOW

In order to determine the conditions for a satellite to be
eclipsed by the earth's shadow, duration of eclipse, geometry, etc.
the following assumptions will be made:

1) Earth's shadow is a circular cylinder of radius R

2) The shedow has no penumbra

3) Atmospheric refraction effects are negligible

4) fThe orbit is unperturbed.

The orbit plane intersects the axis of the earth's shadow

(parallel to gs) at an angle o and the intersection in the orbit
plane will be half an ellipse with semi-major axis Re cscqa and
semi-minor axis Re’ e is a unit vector parallel to the projection
of g, on the orbit plane. Note the limiting cases; a = n/2 -
intersection is a circle of radius Re, a = 0 - intersection is
a semi-infinite rectangle of width 2Reo

The orientation of the satellite's orbit relative to the

shadow's intersection on the orbit plane may be defined by the

62.
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PE'\’/6€E

On the orbit

on the intersection ellipse
N, = a:
‘" [/—cos?x aas’({_;‘] %

when n/2 £ (£ - £%) £ 3nf2
And the conditions for the satellite to pass through the earth's

shadow are
cos & € O

rsind {R
e

where % is the angle between Er and 9—3 + If an eclipse does occur

the entering and leaving true ancmalies R fl

by the identity r = r, or, from equations (E-1) and (E-2)

(E-1)

(E-2)

(e-3)

(E-4)

and f2, can be determined



A 2 %
CZ(/—_:ZT(H-eCos// :[/-— Cos ddosz(f-—,["/] 2 | (E-5)

In general there will be four roots to this transcendental equation
but two of the roots will be discarded as not fulfilling the
condition of equation (E-3).

~ The duration of the eclipse can be determined from Kepler's
equation

E-esinE = n(t-to) (E-6)

where t = to corresponds to perigee passage, n = 2x/P is the mean
motion, P = orbital period, and E is the eccentric anomaly which

is related to f by

fon & = [ES tan (5-7)

“Vise

Thus the time spend in the earth's shadow is

At = ‘L‘z- Z, :;;—D_-[/E;-E;/v‘e /5/’\/5/-‘5//\/52)] (E-8)

The conditions for and duration of a satellite eclipse, there-
fore, are completely specified when @ and £* are known. It is easily

shown by spherical trigonometry, see Figure 1, that

SN = Co5L SInASNA +Sm i hcesados=20s A sml)E-9)

_ Casesst + sim A s
Sw(a)fﬂ - Cosw svw ¢

(E-10)
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cos § = cosa cos (f—ff) (B-11)

For the special case of & circular orbit (e = 0) the conditions

becaome quite simple: r = rc a constant and the conditions are
rc > Re cosQ@, no eclipse (E-12)
r, < R_ cosa, eclipse when n/2 € f-fff 3n/2 (E-13)
and fram equation (E-5)

( ) = /- cosUeosi(f- 1%
or {&)

(f-F) = cos” 2 V= al (s-14)

As perigee is undefined for e = O measure f such that = :r/2,

then by symmetry fl + f2 = 37, and the duration of the eclipse

becomes

AL, = (22 > 7c//j (E-15)

where Pc is the period of the satellite in & circular orbit.
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Figure 2. Surface Geometry for Incident and Reflected
Radiation
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Figure 4. Solar Radiation of Normal Incidence on a Flat
Plate
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Figure 6. Flat Plate on Earth-Sun Line (not to scale)
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